Conditions for Robust Principal Component Analysis
نویسنده
چکیده
Principal Component Analysis (PCA) is the problem of finding a lowrank approximation to a matrix. It is a central problem in statistics, but it is sensitive to sparse errors with large magnitudes. Robust PCA addresses this problem by decomposing a matrix into the sum of a low-rank matrix and a sparse matrix, thereby separating out the sparse errors. This paper provides a background in robust PCA and investigates the conditions under which an optimization problem, Principal Component Pursuit (PCP), solves the robust PCA problem. Before introducing robust PCA, we discuss a related problem, sparse signal recovery (SSR), the problem of finding the sparsest solution to an underdetermined system of linear equations. The concepts used to solve SSR are analogous to the concepts used to solve robust PCA, so presenting the SSR problem gives insight into robust PCA. After analyzing robust PCA, we present the results of numerical experiments that test whether PCP can solve the robust PCA problem even if previously proven sufficient conditions are violated. Acknowledgements: I would like to thank my advisor Prof. Deanna Needell for introducing me to robust PCA and helping me through the process of writing the paper. Her feedback greatly improved the manuscript. I would like to thank the reviewer for helpful suggestions which improved both the proofs and the readability of the paper. This paper was written for the Vertical Integration of Research and Education program (VIGRE) in the Stanford Statistics Department. Page 2 RHIT Undergrad. Math. J., Vol. 12, No. 2
منابع مشابه
An application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملRobust Principal Component Analysis and Fractal Methods to Delineate Mineralization-Related Hydrothermally-Altered Zones from ASTER Data: A Case Study of Dehaj Terrain, Central Iran
The Dehaj area, located in the southern part of the Urumieh-Dokhtar magmatic belt, is a well-endowed terrain hosting a number of world-class porphyry copper deposits. These deposits are all hosted in an acidic to intermediate volcano-plutonic sequence greatly affected by various types of the hydrothermal alterations, whether argillic, phyllic or propylitic. Although there are a handful of hithe...
متن کاملNoise Reduction Based on Robust Principal Component Analysis ⋆
In this paper, we present a new speech enhancement method based on robust principal component analysis. In the proposed method, noisy signal is transformed into time-frequency domain where background noise is assumed as a low-rank component and human speech is regarded as a sparse compone. An inexact augmented Lagrange multipliers algorithm is conducted for solving the noise and speech separati...
متن کاملMonitoring and assessment of a eutrophicated coastal lake using multivariate approaches
Multivariate statistical techniques such as cluster analysis, multidimensional scaling and principal component analysis were applied to evaluate the temporal and spatial variations in water quality data set generated for two years (2008-2010) from six monitoring stations of Veli-Akkulam Lake and compared with a regional reference lake Vellayani of south India. Seasonal variations of 14 differen...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011